| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992 |
- /*#define PROFILE*/
- /*
- * fec.c -- forward error correction based on Vandermonde matrices
- * 980624
- * (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)
- * (C) 2001 Alain Knaff (alain@knaff.lu)
- *
- * Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
- * Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
- * Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials
- * provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
- * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
- * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
- * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
- * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
- * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
- * OF SUCH DAMAGE.
- *
- * Reimplement by Jannson (20161018): compatible for golang version of https://github.com/klauspost/reedsolomon
- */
- /*
- * The following parameter defines how many bits are used for
- * field elements. The code supports any value from 2 to 16
- * but fastest operation is achieved with 8 bit elements
- * This is the only parameter you may want to change.
- */
- #define GF_BITS 8 /* code over GF(2**GF_BITS) - change to suit */
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #include "rs.h"
- /*
- * stuff used for testing purposes only
- */
- #ifdef TEST
- #define DEB(x)
- #define DDB(x) x
- #define DEBUG 0 /* minimal debugging */
- #include <sys/time.h>
- #define DIFF_T(a,b) \
- (1+ 1000000*(a.tv_sec - b.tv_sec) + (a.tv_usec - b.tv_usec) )
- #define TICK(t) \
- {struct timeval x ; \
- gettimeofday(&x, NULL) ; \
- t = x.tv_usec + 1000000* (x.tv_sec & 0xff ) ; \
- }
- #define TOCK(t) \
- { u_long t1 ; TICK(t1) ; \
- if (t1 < t) t = 256000000 + t1 - t ; \
- else t = t1 - t ; \
- if (t == 0) t = 1 ;}
- u_long ticks[10]; /* vars for timekeeping */
- #else
- #define DEB(x)
- #define DDB(x)
- #define TICK(x)
- #define TOCK(x)
- #endif /* TEST */
- /*
- * You should not need to change anything beyond this point.
- * The first part of the file implements linear algebra in GF.
- *
- * gf is the type used to store an element of the Galois Field.
- * Must constain at least GF_BITS bits.
- *
- * Note: unsigned char will work up to GF(256) but int seems to run
- * faster on the Pentium. We use int whenever have to deal with an
- * index, since they are generally faster.
- */
- /*
- * AK: Udpcast only uses GF_BITS=8. Remove other possibilities
- */
- #if (GF_BITS != 8)
- #error "GF_BITS must be 8"
- #endif
- typedef unsigned char gf;
- #define GF_SIZE ((1 << GF_BITS) - 1) /* powers of \alpha */
- /*
- * Primitive polynomials - see Lin & Costello, Appendix A,
- * and Lee & Messerschmitt, p. 453.
- */
- static char *allPp[] = { /* GF_BITS polynomial */
- NULL, /* 0 no code */
- NULL, /* 1 no code */
- "111", /* 2 1+x+x^2 */
- "1101", /* 3 1+x+x^3 */
- "11001", /* 4 1+x+x^4 */
- "101001", /* 5 1+x^2+x^5 */
- "1100001", /* 6 1+x+x^6 */
- "10010001", /* 7 1 + x^3 + x^7 */
- "101110001", /* 8 1+x^2+x^3+x^4+x^8 */
- "1000100001", /* 9 1+x^4+x^9 */
- "10010000001", /* 10 1+x^3+x^10 */
- "101000000001", /* 11 1+x^2+x^11 */
- "1100101000001", /* 12 1+x+x^4+x^6+x^12 */
- "11011000000001", /* 13 1+x+x^3+x^4+x^13 */
- "110000100010001", /* 14 1+x+x^6+x^10+x^14 */
- "1100000000000001", /* 15 1+x+x^15 */
- "11010000000010001" /* 16 1+x+x^3+x^12+x^16 */
- };
- /*
- * To speed up computations, we have tables for logarithm, exponent
- * and inverse of a number. If GF_BITS <= 8, we use a table for
- * multiplication as well (it takes 64K, no big deal even on a PDA,
- * especially because it can be pre-initialized an put into a ROM!),
- * otherwhise we use a table of logarithms.
- * In any case the macro gf_mul(x,y) takes care of multiplications.
- */
- static gf gf_exp[2*GF_SIZE]; /* index->poly form conversion table */
- static int gf_log[GF_SIZE + 1]; /* Poly->index form conversion table */
- static gf inverse[GF_SIZE+1]; /* inverse of field elem. */
- /* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) */
- /*
- * modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1,
- * without a slow divide.
- */
- static inline gf
- modnn(int x)
- {
- while (x >= GF_SIZE) {
- x -= GF_SIZE;
- x = (x >> GF_BITS) + (x & GF_SIZE);
- }
- return x;
- }
- #define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
- /*
- * gf_mul(x,y) multiplies two numbers. If GF_BITS<=8, it is much
- * faster to use a multiplication table.
- *
- * USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying
- * many numbers by the same constant. In this case the first
- * call sets the constant, and others perform the multiplications.
- * A value related to the multiplication is held in a local variable
- * declared with USE_GF_MULC . See usage in addmul1().
- */
- __declspec(align(16)) static gf gf_mul_table[(GF_SIZE + 1)*(GF_SIZE + 1)];
- #define gf_mul(x,y) gf_mul_table[(x<<8)+y]
- #define USE_GF_MULC register gf * __gf_mulc_
- #define GF_MULC0(c) __gf_mulc_ = &gf_mul_table[(c)<<8]
- #define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
- #define GF_MULC(dst, x) dst = __gf_mulc_[x]
- static void
- init_mul_table(void)
- {
- int i, j;
- for (i=0; i< GF_SIZE+1; i++)
- for (j=0; j< GF_SIZE+1; j++)
- gf_mul_table[(i<<8)+j] = gf_exp[modnn(gf_log[i] + gf_log[j]) ] ;
- for (j=0; j< GF_SIZE+1; j++)
- gf_mul_table[j] = gf_mul_table[j<<8] = 0;
- }
- /*
- * Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
- * Lookup tables:
- * index->polynomial form gf_exp[] contains j= \alpha^i;
- * polynomial form -> index form gf_log[ j = \alpha^i ] = i
- * \alpha=x is the primitive element of GF(2^m)
- *
- * For efficiency, gf_exp[] has size 2*GF_SIZE, so that a simple
- * multiplication of two numbers can be resolved without calling modnn
- */
- /*
- * initialize the data structures used for computations in GF.
- */
- static void
- generate_gf(void)
- {
- int i;
- gf mask;
- char *Pp = allPp[GF_BITS] ;
- mask = 1; /* x ** 0 = 1 */
- gf_exp[GF_BITS] = 0; /* will be updated at the end of the 1st loop */
- /*
- * first, generate the (polynomial representation of) powers of \alpha,
- * which are stored in gf_exp[i] = \alpha ** i .
- * At the same time build gf_log[gf_exp[i]] = i .
- * The first GF_BITS powers are simply bits shifted to the left.
- */
- for (i = 0; i < GF_BITS; i++, mask <<= 1 ) {
- gf_exp[i] = mask;
- gf_log[gf_exp[i]] = i;
- /*
- * If Pp[i] == 1 then \alpha ** i occurs in poly-repr
- * gf_exp[GF_BITS] = \alpha ** GF_BITS
- */
- if ( Pp[i] == '1' )
- gf_exp[GF_BITS] ^= mask;
- }
- /*
- * now gf_exp[GF_BITS] = \alpha ** GF_BITS is complete, so can als
- * compute its inverse.
- */
- gf_log[gf_exp[GF_BITS]] = GF_BITS;
- /*
- * Poly-repr of \alpha ** (i+1) is given by poly-repr of
- * \alpha ** i shifted left one-bit and accounting for any
- * \alpha ** GF_BITS term that may occur when poly-repr of
- * \alpha ** i is shifted.
- */
- mask = 1 << (GF_BITS - 1 ) ;
- for (i = GF_BITS + 1; i < GF_SIZE; i++) {
- if (gf_exp[i - 1] >= mask)
- gf_exp[i] = gf_exp[GF_BITS] ^ ((gf_exp[i - 1] ^ mask) << 1);
- else
- gf_exp[i] = gf_exp[i - 1] << 1;
- gf_log[gf_exp[i]] = i;
- }
- /*
- * log(0) is not defined, so use a special value
- */
- gf_log[0] = GF_SIZE ;
- /* set the extended gf_exp values for fast multiply */
- for (i = 0 ; i < GF_SIZE ; i++)
- gf_exp[i + GF_SIZE] = gf_exp[i] ;
- /*
- * again special cases. 0 has no inverse. This used to
- * be initialized to GF_SIZE, but it should make no difference
- * since noone is supposed to read from here.
- */
- inverse[0] = 0 ;
- inverse[1] = 1;
- for (i=2; i<=GF_SIZE; i++)
- inverse[i] = gf_exp[GF_SIZE-gf_log[i]];
- }
- /*
- * Various linear algebra operations that i use often.
- */
- /*
- * addmul() computes dst[] = dst[] + c * src[]
- * This is used often, so better optimize it! Currently the loop is
- * unrolled 16 times, a good value for 486 and pentium-class machines.
- * The case c=0 is also optimized, whereas c=1 is not. These
- * calls are unfrequent in my typical apps so I did not bother.
- *
- * Note that gcc on
- */
- #if 0
- #define addmul(dst, src, c, sz) \
- if (c != 0) addmul1(dst, src, c, sz)
- #endif
- #define UNROLL 16 /* 1, 4, 8, 16 */
- static void
- slow_addmul1(gf *dst1, gf *src1, gf c, int sz)
- {
- USE_GF_MULC ;
- register gf *dst = dst1, *src = src1 ;
- gf *lim = &dst[sz - UNROLL + 1] ;
- GF_MULC0(c) ;
- #if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
- for (; dst < lim ; dst += UNROLL, src += UNROLL ) {
- GF_ADDMULC( dst[0] , src[0] );
- GF_ADDMULC( dst[1] , src[1] );
- GF_ADDMULC( dst[2] , src[2] );
- GF_ADDMULC( dst[3] , src[3] );
- #if (UNROLL > 4)
- GF_ADDMULC( dst[4] , src[4] );
- GF_ADDMULC( dst[5] , src[5] );
- GF_ADDMULC( dst[6] , src[6] );
- GF_ADDMULC( dst[7] , src[7] );
- #endif
- #if (UNROLL > 8)
- GF_ADDMULC( dst[8] , src[8] );
- GF_ADDMULC( dst[9] , src[9] );
- GF_ADDMULC( dst[10] , src[10] );
- GF_ADDMULC( dst[11] , src[11] );
- GF_ADDMULC( dst[12] , src[12] );
- GF_ADDMULC( dst[13] , src[13] );
- GF_ADDMULC( dst[14] , src[14] );
- GF_ADDMULC( dst[15] , src[15] );
- #endif
- }
- #endif
- lim += UNROLL - 1 ;
- for (; dst < lim; dst++, src++ ) /* final components */
- GF_ADDMULC( *dst , *src );
- }
- # define addmul1 slow_addmul1
- static void addmul(gf *dst, gf *src, gf c, int sz) {
- // fprintf(stderr, "Dst=%p Src=%p, gf=%02x sz=%d\n", dst, src, c, sz);
- if (c != 0) addmul1(dst, src, c, sz);
- }
- /*
- * mul() computes dst[] = c * src[]
- * This is used often, so better optimize it! Currently the loop is
- * unrolled 16 times, a good value for 486 and pentium-class machines.
- * The case c=0 is also optimized, whereas c=1 is not. These
- * calls are unfrequent in my typical apps so I did not bother.
- *
- * Note that gcc on
- */
- #if 0
- #define mul(dst, src, c, sz) \
- do { if (c != 0) mul1(dst, src, c, sz); else memset(dst, 0, c); } while(0)
- #endif
- #define UNROLL 16 /* 1, 4, 8, 16 */
- static void
- slow_mul1(gf *dst1, gf *src1, gf c, int sz)
- {
- USE_GF_MULC ;
- register gf *dst = dst1, *src = src1 ;
- gf *lim = &dst[sz - UNROLL + 1] ;
- GF_MULC0(c) ;
- #if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
- for (; dst < lim ; dst += UNROLL, src += UNROLL ) {
- GF_MULC( dst[0] , src[0] );
- GF_MULC( dst[1] , src[1] );
- GF_MULC( dst[2] , src[2] );
- GF_MULC( dst[3] , src[3] );
- #if (UNROLL > 4)
- GF_MULC( dst[4] , src[4] );
- GF_MULC( dst[5] , src[5] );
- GF_MULC( dst[6] , src[6] );
- GF_MULC( dst[7] , src[7] );
- #endif
- #if (UNROLL > 8)
- GF_MULC( dst[8] , src[8] );
- GF_MULC( dst[9] , src[9] );
- GF_MULC( dst[10] , src[10] );
- GF_MULC( dst[11] , src[11] );
- GF_MULC( dst[12] , src[12] );
- GF_MULC( dst[13] , src[13] );
- GF_MULC( dst[14] , src[14] );
- GF_MULC( dst[15] , src[15] );
- #endif
- }
- #endif
- lim += UNROLL - 1 ;
- for (; dst < lim; dst++, src++ ) /* final components */
- GF_MULC( *dst , *src );
- }
- # define mul1 slow_mul1
- static inline void mul(gf *dst, gf *src, gf c, int sz) {
- /*fprintf(stderr, "%p = %02x * %p\n", dst, c, src);*/
- if (c != 0) mul1(dst, src, c, sz); else memset(dst, 0, c);
- }
- /*
- * invert_mat() takes a matrix and produces its inverse
- * k is the size of the matrix.
- * (Gauss-Jordan, adapted from Numerical Recipes in C)
- * Return non-zero if singular.
- */
- DEB( int pivloops=0; int pivswaps=0 ; /* diagnostic */)
- static int
- invert_mat(gf *src, int k)
- {
- gf c, *p ;
- int irow, icol, row, col, i, ix ;
- int error = 1 ;
- int *indxc = malloc(k*sizeof(int));
- int *indxr = malloc(k*sizeof(int));
- int *ipiv = malloc(k*sizeof(int));
- gf *id_row = malloc(k*sizeof(gf));
- // int indxc[k];
- // int indxr[k];
- // int ipiv[k];
- // gf id_row[k];
- memset(id_row, 0, k*sizeof(gf));
- DEB( pivloops=0; pivswaps=0 ; /* diagnostic */ )
- /*
- * ipiv marks elements already used as pivots.
- */
- for (i = 0; i < k ; i++)
- ipiv[i] = 0 ;
- for (col = 0; col < k ; col++) {
- gf *pivot_row ;
- /*
- * Zeroing column 'col', look for a non-zero element.
- * First try on the diagonal, if it fails, look elsewhere.
- */
- irow = icol = -1 ;
- if (ipiv[col] != 1 && src[col*k + col] != 0) {
- irow = col ;
- icol = col ;
- goto found_piv ;
- }
- for (row = 0 ; row < k ; row++) {
- if (ipiv[row] != 1) {
- for (ix = 0 ; ix < k ; ix++) {
- DEB( pivloops++ ; )
- if (ipiv[ix] == 0) {
- if (src[row*k + ix] != 0) {
- irow = row ;
- icol = ix ;
- goto found_piv ;
- }
- } else if (ipiv[ix] > 1) {
- fprintf(stderr, "singular matrix\n");
- goto fail ;
- }
- }
- }
- }
- if (icol == -1) {
- fprintf(stderr, "XXX pivot not found!\n");
- goto fail ;
- }
- found_piv:
- ++(ipiv[icol]) ;
- /*
- * swap rows irow and icol, so afterwards the diagonal
- * element will be correct. Rarely done, not worth
- * optimizing.
- */
- if (irow != icol) {
- for (ix = 0 ; ix < k ; ix++ ) {
- SWAP( src[irow*k + ix], src[icol*k + ix], gf) ;
- }
- }
- indxr[col] = irow ;
- indxc[col] = icol ;
- pivot_row = &src[icol*k] ;
- c = pivot_row[icol] ;
- if (c == 0) {
- fprintf(stderr, "singular matrix 2\n");
- goto fail ;
- }
- if (c != 1 ) { /* otherwhise this is a NOP */
- /*
- * this is done often , but optimizing is not so
- * fruitful, at least in the obvious ways (unrolling)
- */
- DEB( pivswaps++ ; )
- c = inverse[ c ] ;
- pivot_row[icol] = 1 ;
- for (ix = 0 ; ix < k ; ix++ )
- pivot_row[ix] = gf_mul(c, pivot_row[ix] );
- }
- /*
- * from all rows, remove multiples of the selected row
- * to zero the relevant entry (in fact, the entry is not zero
- * because we know it must be zero).
- * (Here, if we know that the pivot_row is the identity,
- * we can optimize the addmul).
- */
- id_row[icol] = 1;
- if (memcmp(pivot_row, id_row, k*sizeof(gf)) != 0) {
- for (p = src, ix = 0 ; ix < k ; ix++, p += k ) {
- if (ix != icol) {
- c = p[icol] ;
- p[icol] = 0 ;
- addmul(p, pivot_row, c, k );
- }
- }
- }
- id_row[icol] = 0;
- } /* done all columns */
- for (col = k-1 ; col >= 0 ; col-- ) {
- if (indxr[col] <0 || indxr[col] >= k)
- fprintf(stderr, "AARGH, indxr[col] %d\n", indxr[col]);
- else if (indxc[col] <0 || indxc[col] >= k)
- fprintf(stderr, "AARGH, indxc[col] %d\n", indxc[col]);
- else
- if (indxr[col] != indxc[col] ) {
- for (row = 0 ; row < k ; row++ ) {
- SWAP( src[row*k + indxr[col]], src[row*k + indxc[col]], gf) ;
- }
- }
- }
- error = 0 ;
- fail:
- free(indxc);
- free(indxr);
- free(ipiv);
- free(id_row);
- return error ;
- }
- static int fec_initialized = 0 ;
- void fec_init(void)
- {
- TICK(ticks[0]);
- generate_gf();
- TOCK(ticks[0]);
- DDB(fprintf(stderr, "generate_gf took %ldus\n", ticks[0]);)
- TICK(ticks[0]);
- init_mul_table();
- TOCK(ticks[0]);
- DDB(fprintf(stderr, "init_mul_table took %ldus\n", ticks[0]);)
- fec_initialized = 1 ;
- }
- #ifdef PROFILE
- #ifdef __x86_64__
- static long long rdtsc(void)
- {
- unsigned long low, hi;
- asm volatile ("rdtsc" : "=d" (hi), "=a" (low));
- return ( (((long long)hi) << 32) | ((long long) low));
- }
- #elif __arm__
- static long long rdtsc(void)
- {
- u64 val;
- asm volatile("mrs %0, cntvct_el0" : "=r" (val));
- return val;
- }
- #endif
- void print_matrix1(gf* matrix, int nrows, int ncols) {
- int i, j;
- printf("matrix (%d,%d):\n", nrows, ncols);
- for(i = 0; i < nrows; i++) {
- for(j = 0; j < ncols; j++) {
- printf("%6d ", matrix[i*ncols + j]);
- }
- printf("\n");
- }
- }
- void print_matrix2(gf** matrix, int nrows, int ncols) {
- int i, j;
- printf("matrix (%d,%d):\n", nrows, ncols);
- for(i = 0; i < nrows; i++) {
- for(j = 0; j < ncols; j++) {
- printf("%6d ", matrix[i][j]);
- }
- printf("\n");
- }
- }
- #endif
- /* y = a**n */
- static gf galExp(gf a, gf n) {
- int logA;
- int logResult;
- if(0 == n) {
- return 1;
- }
- if(0 == a) {
- return 0;
- }
- logA = gf_log[a];
- logResult = logA * n;
- while(logResult >= 255) {
- logResult -= 255;
- }
- return gf_exp[logResult];
- }
- static inline gf galMultiply(gf a, gf b) {
- return gf_mul_table[ ((int)a << 8) + (int)b ];
- }
- static gf* vandermonde(int nrows, int ncols) {
- int row, col, ptr;
- gf* matrix = (gf*)RS_MALLOC(nrows * ncols);
- if(NULL != matrix) {
- ptr = 0;
- for(row = 0; row < nrows; row++) {
- for(col = 0; col < ncols; col++) {
- matrix[ptr++] = galExp((gf)row, (gf)col);
- }
- }
- }
- return matrix;
- }
- /*
- * Not check for input params
- * */
- static gf* sub_matrix(gf* matrix, int rmin, int cmin, int rmax, int cmax, int nrows, int ncols) {
- int i, j, ptr = 0;
- gf* new_m = (gf*)RS_MALLOC( (rmax-rmin) * (cmax-cmin) );
- if(NULL != new_m) {
- for(i = rmin; i < rmax; i++) {
- for(j = cmin; j < cmax; j++) {
- new_m[ptr++] = matrix[i*ncols + j];
- }
- }
- }
- return new_m;
- }
- /* y = a.dot(b) */
- static gf* multiply1(gf *a, int ar, int ac, gf *b, int br, int bc) {
- gf *new_m, tg;
- int r, c, i, ptr = 0;
- assert(ac == br);
- new_m = (gf*)RS_CALLOC(1, ar*bc);
- if(NULL != new_m) {
- /* this multiply is slow */
- for(r = 0; r < ar; r++) {
- for(c = 0; c < bc; c++) {
- tg = 0;
- for(i = 0; i < ac; i++) {
- /* tg ^= gf_mul_table[ ((int)a[r*ac+i] << 8) + (int)b[i*bc+c] ]; */
- tg ^= galMultiply(a[r*ac+i], b[i*bc+c]);
- }
- new_m[ptr++] = tg;
- }
- }
- }
- return new_m;
- }
- /* copy from golang rs version */
- static inline int code_some_shards(gf* matrixRows, gf** inputs, gf** outputs,
- int dataShards, int outputCount, int byteCount) {
- gf* in;
- int iRow, c;
- for(c = 0; c < dataShards; c++) {
- in = inputs[c];
- for(iRow = 0; iRow < outputCount; iRow++) {
- if(0 == c) {
- mul(outputs[iRow], in, matrixRows[iRow*dataShards+c], byteCount);
- } else {
- addmul(outputs[iRow], in, matrixRows[iRow*dataShards+c], byteCount);
- }
- }
- }
- return 0;
- }
- reed_solomon* reed_solomon_new(int data_shards, int parity_shards) {
- gf* vm = NULL;
- gf* top = NULL;
- int err = 0;
- reed_solomon* rs = NULL;
- /* MUST use fec_init once time first */
- assert(fec_initialized);
- do {
- rs = (reed_solomon*) RS_MALLOC(sizeof(reed_solomon));
- if(NULL == rs) {
- return NULL;
- }
- rs->data_shards = data_shards;
- rs->parity_shards = parity_shards;
- rs->shards = (data_shards + parity_shards);
- rs->m = NULL;
- rs->parity = NULL;
- if(rs->shards > DATA_SHARDS_MAX || data_shards <= 0 || parity_shards <= 0) {
- err = 1;
- break;
- }
- vm = vandermonde(rs->shards, rs->data_shards);
- if(NULL == vm) {
- err = 2;
- break;
- }
- top = sub_matrix(vm, 0, 0, data_shards, data_shards, rs->shards, data_shards);
- if(NULL == top) {
- err = 3;
- break;
- }
- err = invert_mat(top, data_shards);
- assert(0 == err);
- rs->m = multiply1(vm, rs->shards, data_shards, top, data_shards, data_shards);
- if(NULL == rs->m) {
- err = 4;
- break;
- }
- rs->parity = sub_matrix(rs->m, data_shards, 0, rs->shards, data_shards, rs->shards, data_shards);
- if(NULL == rs->parity) {
- err = 5;
- break;
- }
- RS_FREE(vm);
- RS_FREE(top);
- vm = NULL;
- top = NULL;
- return rs;
- } while(0);
- fprintf(stderr, "err=%d\n", err);
- if(NULL != vm) {
- RS_FREE(vm);
- }
- if(NULL != top) {
- RS_FREE(top);
- }
- if(NULL != rs) {
- if(NULL != rs->m) {
- RS_FREE(rs->m);
- }
- if(NULL != rs->parity) {
- RS_FREE(rs->parity);
- }
- RS_FREE(rs);
- }
- return NULL;
- }
- void reed_solomon_release(reed_solomon* rs) {
- if(NULL != rs) {
- if(NULL != rs->m) {
- RS_FREE(rs->m);
- }
- if(NULL != rs->parity) {
- RS_FREE(rs->parity);
- }
- RS_FREE(rs);
- }
- }
- /**
- * encode one shard
- * input:
- * rs
- * data_blocks[rs->data_shards][block_size]
- * fec_blocks[rs->data_shards][block_size]
- * */
- int reed_solomon_encode(reed_solomon* rs,
- unsigned char** data_blocks,
- unsigned char** fec_blocks,
- int block_size) {
- assert(NULL != rs && NULL != rs->parity);
- return code_some_shards(rs->parity, data_blocks, fec_blocks
- , rs->data_shards, rs->parity_shards, block_size);
- }
- /**
- * decode one shard
- * input:
- * rs
- * original data_blocks[rs->data_shards][block_size]
- * dec_fec_blocks[nr_fec_blocks][block_size]
- * fec_block_nos: fec pos number in original fec_blocks
- * erased_blocks: erased blocks in original data_blocks
- * nr_fec_blocks: the number of erased blocks
- * */
- int reed_solomon_decode(reed_solomon* rs,
- unsigned char **data_blocks,
- int block_size,
- unsigned char **dec_fec_blocks,
- unsigned int *fec_block_nos,
- unsigned int *erased_blocks,
- int nr_fec_blocks) {
- /* use stack instead of malloc, define a small number of DATA_SHARDS_MAX to save memory */
- gf dataDecodeMatrix[DATA_SHARDS_MAX*DATA_SHARDS_MAX];
- unsigned char* subShards[DATA_SHARDS_MAX];
- unsigned char* outputs[DATA_SHARDS_MAX];
- gf* m = rs->m;
- int i, j, c, swap, subMatrixRow, dataShards, nos, nshards;
- /* the erased_blocks should always sorted
- * if sorted, nr_fec_blocks times to check it
- * if not, sort it here
- * */
- for(i = 0; i < nr_fec_blocks; i++) {
- swap = 0;
- for(j = i+1; j < nr_fec_blocks; j++) {
- if(erased_blocks[i] > erased_blocks[j]) {
- /* the prefix is bigger than the following, swap */
- c = erased_blocks[i];
- erased_blocks[i] = erased_blocks[j];
- erased_blocks[j] = c;
- swap = 1;
- }
- }
- //printf("swap:%d\n", swap);
- if(!swap) {
- //already sorted or sorted ok
- break;
- }
- }
- j = 0;
- subMatrixRow = 0;
- nos = 0;
- nshards = 0;
- dataShards = rs->data_shards;
- for(i = 0; i < dataShards; i++) {
- if(j < nr_fec_blocks && i == erased_blocks[j]) {
- //ignore the invalid block
- j++;
- } else {
- /* this row is ok */
- for(c = 0; c < dataShards; c++) {
- dataDecodeMatrix[subMatrixRow*dataShards + c] = m[i*dataShards + c];
- }
- subShards[subMatrixRow] = data_blocks[i];
- subMatrixRow++;
- }
- }
- for(i = 0; i < nr_fec_blocks && subMatrixRow < dataShards; i++) {
- subShards[subMatrixRow] = dec_fec_blocks[i];
- j = dataShards + fec_block_nos[i];
- for(c = 0; c < dataShards; c++) {
- dataDecodeMatrix[subMatrixRow*dataShards + c] = m[j*dataShards + c]; //use spefic pos of original fec_blocks
- }
- subMatrixRow++;
- }
- if(subMatrixRow < dataShards) {
- //cannot correct
- return -1;
- }
- invert_mat(dataDecodeMatrix, dataShards);
- //printf("invert:\n");
- //print_matrix1(dataDecodeMatrix, dataShards, dataShards);
- //printf("nShards:\n");
- //print_matrix2(subShards, dataShards, block_size);
- for(i = 0; i < nr_fec_blocks; i++) {
- j = erased_blocks[i];
- outputs[i] = data_blocks[j];
- //data_blocks[j][0] = 0;
- memmove(dataDecodeMatrix+i*dataShards, dataDecodeMatrix+j*dataShards, dataShards);
- }
- //printf("subMatrixRow:\n");
- //print_matrix1(dataDecodeMatrix, nr_fec_blocks, dataShards);
- //printf("outputs:\n");
- //print_matrix2(outputs, nr_fec_blocks, block_size);
- return code_some_shards(dataDecodeMatrix, subShards, outputs,
- dataShards, nr_fec_blocks, block_size);
- }
- /**
- * encode a big size of buffer
- * input:
- * rs
- * nr_shards: assert(0 == nr_shards % rs->shards)
- * shards[nr_shards][block_size]
- * */
- int reed_solomon_encode2(reed_solomon* rs, unsigned char** shards, int nr_shards, int block_size) {
- unsigned char** data_blocks;
- unsigned char** fec_blocks;
- int i, ds = rs->data_shards, ps = rs->parity_shards, ss = rs->shards;
- i = nr_shards / ss;
- data_blocks = shards;
- fec_blocks = &shards[(i*ds)];
- for(i = 0; i < nr_shards; i += ss) {
- reed_solomon_encode(rs, data_blocks, fec_blocks, block_size);
- data_blocks += ds;
- fec_blocks += ps;
- }
- return 0;
- }
- /**
- * reconstruct a big size of buffer
- * input:
- * rs
- * nr_shards: assert(0 == nr_shards % rs->data_shards)
- * shards[nr_shards][block_size]
- * marks[nr_shards] marks as errors
- * */
- int reed_solomon_reconstruct(reed_solomon* rs,
- unsigned char** shards,
- unsigned char* marks,
- int nr_shards,
- int block_size) {
- unsigned char *dec_fec_blocks[DATA_SHARDS_MAX];
- unsigned int fec_block_nos[DATA_SHARDS_MAX];
- unsigned int erased_blocks[DATA_SHARDS_MAX];
- unsigned char* fec_marks;
- unsigned char **data_blocks, **fec_blocks;
- int i, j, dn, pn, n;
- int ds = rs->data_shards;
- int ps = rs->parity_shards;
- int err = 0;
- data_blocks = shards;
- n = nr_shards / rs->shards;
- fec_marks = marks + n*ds; //after all data, is't fec marks
- fec_blocks = shards + n*ds;
- for(j = 0; j < n; j++) {
- dn = 0;
- for(i = 0; i < ds; i++) {
- if(marks[i]) {
- //errors
- erased_blocks[dn++] = i;
- }
- }
- if(dn > 0) {
- pn = 0;
- for(i = 0; i < ps && pn < dn; i++) {
- if(!fec_marks[i]) {
- //got valid fec row
- fec_block_nos[pn] = i;
- dec_fec_blocks[pn] = fec_blocks[i];
- pn++;
- }
- }
- if(dn == pn) {
- reed_solomon_decode(rs
- , data_blocks
- , block_size
- , dec_fec_blocks
- , fec_block_nos
- , erased_blocks
- , dn);
- } else {
- //error but we continue
- err = -1;
- }
- }
- data_blocks += ds;
- marks += ds;
- fec_blocks += ps;
- fec_marks += ps;
- }
- return err;
- }
|